

Hydrogen, Fuel Cells & Infrastructure Technologies Program

Materials in the DOE Hydrogen Sorption Center of Excellence

Anne Dillon National Renewable Energy Laboratory

Partners: 9 universities, 5 government labs, 1 company

Outline

- Overview of sorption center: objectives and strategy, partners, research cluster organization.
- **Engineered nanospace:** High surface area, porous high-density materials.
- Substituted materials: Heterogeneous materials with enhanced H₂ binding energies.
- Strong binding: Metal decorated materials with strong
 H₂ metal interaction.
- Spillover: Catalytic hydrogen dissociative adsorption.
- Conclusions

Objectives

Discover and develop high-capacity sorbent materials that can operate at ambient temperatures and be efficiently and quickly charged on-board with minimum energy requirements and minimum penalties to the hydrogen fuel infrastructure. Overcome barriers to 2010 DOE system goals and identify pathways to meet 2015 goals.

- Optimize sorbent material with high surface area and high density to meet both gravimetric and volumetric targets simultaneously with rapid kinetics.
- Develop materials which utilize mechanisms that bind H₂ with an optimal energy for near ambient operation (10 20 kJ/mol H₂).
- Devise facile synthetic routes using low cost approaches.

DOE 2010 Technical Targets for Storage System

- Gravimetric 0.06 kg H₂/kg

- Volumetric 0.045 kg H₂/L

Strategy

Tuning Sorption Materials to Meet Both Volumetric and Gravimetric Targets

Volumetric capacity versus gravimetric capacity:

Specific Number of Sorption Sites: $D_{\scriptscriptstyle S} = N_{\scriptscriptstyle S} \, / \, M = S_{{\scriptscriptstyle SSA}} \, / \, s_0$

Gravimetric Capacity: $C_W = N_s n_H / M = D_s n_H$

Volumetric Capacity: $C_V = D_s n_H D_M = C_W D_M$

 $N_{
m s}$: Number of sorption sites

M : Mass of the material

 S_{SSA} : Specific Surface Area

 s_0 : Area per sorption site

 $n_{
m H}$: Number of H atoms per site

 D_M : Density of the material

- Volumetric capacity is proportional to both gravimetric capacity and material density.
- Increasing volumetric capacity and gravimetric capacity simultaneously requires increasing both high specific surface area and high packing density, which means larger pores should be avoided.
- •An optimized system with 3.2 Å pore size and SSA + 11500 m^2/g will enable 6 wt% and 50 kg/m^3 hydrogen storage.

Tune Binding Energy for Adsorption at Moderate Temperature and Pressure

- Heat removal with loading 5 kg of H₂ adversely impacts system capacities (heat exchangers) and refueling rates.
- The enthalpy should be the absolute minimum required to store the hydrogen.
- Sorbent materials offer the highest round trip (charge/discharge) energy efficiencies.

$$\Delta H_{\rm opt} = T\Delta S + RT \ln(P_1 P_2 / P_0)$$

Charge to P_2 and discharge to P_1 (1.5 atm) Entropy values for theoretical slit pore (-8R) and intercalated graphite (-10R).

After Bhatia & Myers, Langmuir 2006, 22, 1688.

Approach

Research Clusters (RCs) Focused on Volumetric Packing and Designed Sorption Mechanisms

Research Clusters

- RC1: Engineered Nanospaces: optimize material density and surface area.
- RC2: Substituted Materials: e.g. BC₃ to enhance binding energy.
- RC3: Strong Binding: stronger interaction with atomic metal atoms.
- RC4: Spillover;; catalytic dissociative adsorption.

Research Activities

Carbon Aerogels for H₂ Sorption

Kabbour, Baumann, Satcher, Saulnier and Ahn, *Chem. Mater.* **2006**, *18*, 6085.

5.3 wt% and 0.029 kg H₂/L

- CA synthesis allows for control over bulk properties: surface area, pore size, pore volume, density.
- Homogeneous incorporation of metal catalysts is also possible.

Nanostructured Polymers as Hydrogen Storage Media

Conductive strand linked by spirobifluorene core

DFT analysis on SSA vs. pore width - an example

Microporous Carbons With Controlled Pore Sizes

- Surfactant molecules to form micelles with different sizes.
- Polymer precursor introduced interacts with the outer surface of the micelles.
- Polymerization results in a strong framework using micelles templates.
- Surfactants are thermally removed and polymer is graphitized to form desired matrix
- Process allows for tailored pore size and surface areas from 500-3000 m²/ g.
- Typically 1 wt% H₂ is absorbed / 500 m² surface area. (Chahine's Rule).

Microporous Carbons With Controlled Pore Sizes

Four H₂ Binding Sites

Distances

- $Zn-H_2 : \sim 2.6 \text{ Å}.$
- H₂ @ site 1 to 2: ~ 2.9 Å
- H₂ @ site 1 to 3: ~ 2.85 Å
- D_2 - D_2 in solid: ~ 3 .6 Å
- Close-packed H₂ layer on graphite: 3.51 Å

Zn-based MOF-74

High initial enthalpy due to interaction with coordinatively unsaturated metal centers

First observation of denser packing than hydrogen monolayer

b)

Implications for enhanced H₂ packing and improvements in volumetric performance.

Substituted Materials

Boron-substituted Graphitic Materials for Enhanced H₂ Binding

(c) NiB-11:N₂

Enhanced H₂ binding energy at boron site (12-30 kJ / mol)

Kim et al., PRL 96, 16102 (2006)

Loading in lasergenerated carbon nanotubes only 1-2 at.%

Have achieved ~9 at.% loading in CVD thin films

Blackburn et al., Chem. Mater. 18, 2558 (2006)

Boron atoms predicted to bind H₂ with higher binding energy. Boron incorporation depends on material and synthesis method.

Substituted Materials

Boron-loaded Highly Porous Carbons via Pyrolysis

- ~8 at% B from pyrolysis of polymers (NIST prompt gamma analysis)
- B content decreases with pyrolysis temp.
- B-doped materials store 2-3 times more H than activated carbon on a per SSA basis at both 77 K and RT. Data is for a B/C sorbent with a surface area of ~800 m²/g.

H₂ Binding via Kubas Interaction with Transition Metal

 $C_{60}[ScH_2(H_2)_4]_{12}$

Organometallic Fullerenes

This theoretically stable Scandium organo-metallic complex represents a compound that stores hydrogen at 8.8 wt% with 7.0 wt% stored reversibly.

Minimum Energy Structure with regions around the 5-membered rings that have aromatic character.

C₆₀ previously had aromatic character around the 6-membered rings. J. Poater, M. Duran and M. Sola Int. J. Quant. Chem. 98 (2004) 361.

 $Fe(H_2)_x$

Tractable Reactions to Demonstrate Kubas Binding

- 14 / 16e⁻ complex (depending on amide lone pair donation)
- Fe^{II} = d^6 = backdonating to H_2

- Highly redox active at Fe and B centers
- Substitution of Cp ring may allow for H₂ binding
- Boron bridge will provide H₂ binding site

Solution NMR may be employed to rapidly determine formation of Kubas complexes.

Metal Alignment in MOFs Enhances Enthalpy

PCN-12 exhibits **3.0** wt% at 77K and 1 bar, with a volumetric density of 24.6 mg/cm³

- Polymorphs have identical composition and atom-to-atom connectivity, but different metal alignments.
- Enhanced heat persists to relatively high coverages. (2 H₂/Cu ~ 1.7 wt%)

ΔH of PCN-12 is ~12.5 kJ/mol at low coverage, and ~10 kJ/mol at 2 wt%

F- Anion Intercalated Graphite for Enhanced Binding

Charge transfer from F⁻ to σ^* -orbital of H₂ enables enhanced binding energy

Complex	H ₂ wt.%	d (Å)	Q F	∆E (kJ/mol·H ₂)
C ₃₂ F ₈	-	5.698	-0.659	-
C ₃₂ F ₈ ·H ₂	0.37	5.613	-0.656	-23.3
C ₃₂ F ₈ ·2H ₂	0.74	5.602	-0.655	-19.6
C ₃₂ F ₈ ·12H ₂	4.29	6.556	-0.657	-10.5
C ₃₂ F ₈ ·24H ₂	8.22	7.723	-0.656	-3.6

Mixed F⁻ / BF₄⁻ Intercalated Graphite

Calculated values

Spillover

Dissociative Hydrogenation with Pt Catalyst

- Well dispersed Pt particles catalyze dissociative H₂ adsorption on a variety of high surface area supports including activated carbon, MOFs, carbon nanohorns and aerogels.
- Incorporation of simple bridge structures to facilitate H₂ diffusion and increased capacity.
- Process fully reversible at room temperature. Graphite

Spillover

Spillover on Metal Organic Frameworks

Spillover is observed for MOFs with simple incorporation of Pt catalyst mixed with activated carbon and further improved with sugar bridges.

Conclusions

- High surface area, porous high-density materials provide frameworks for hydrogen adsorption materials.
- Substitution of heteroatoms e.g. boron in carbon may allow for the binding energy of H₂ in frameworks to increase.
- Isolated metal atoms in various frameworks can also bind dihydrogen species with an enhanced binding energy.
- Catalytic hydrogen dissociative adsorption is reversible at room temperature with a Pt catalyst.

Acknowledgements

We are grateful for support from:

The Office of Energy Efficiency and Renewable Energy Hydrogen, Fuel Cell, and Infrastructure Technologies Program.

Under Department of Energy Grant No. DE-AC36-08GO28308

Thank You for Your Attention